Bijections for Cayley trees, spanning trees, and their q-analogues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bijections for Cayley trees, spanning trees, and their q-analogues

We construct a family of extremely simple bijections that yield Cayley’s famous formula for counting trees. The weight preserving properties of these bijections furnish a number of multivariate generating functions for weighted Cayley trees. Essentially the same idea is used to derive bijective proofs and q-analogues for the number of spanning trees of other graphs, including the complete bipar...

متن کامل

Two Bijections between G-parking Functions and Spanning Trees

For a directed graph G on vertices {0, 1, . . . , n}, a G-parking function is an n-tuple (b1, . . . , bn) of non-negative integers such that, for every non-empty subset U ⊆ {1, . . . , n}, there exists a vertex j ∈ U for which there are more than bj edges going from j to G − U . We construct two bijective maps between the set PG of Gparking functions and the set TG of spanning trees of G rooted...

متن کامل

Bijections for 2-plane trees and ternary trees

According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane tree which is a planted plane tree with each of its vertices colored with one of two colors and qqppppppppppppppppp -free. The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several bijections. Especially, we found a bijection between the set of 2-plane trees...

متن کامل

Bijections for ternary trees and non-crossing trees

The number Nn of non-crossing trees of size n satis/es Nn+1 = Tn where Tn enumerates ternary trees of size n. We construct a new bijection to establish that fact. Since Tn =(1=(2n+ 1))( 3n n ), it follows that 3(3n− 1)(3n− 2)Tn−1 = 2n(2n+ 1)Tn. We construct two bijections “explaining” this recursion; one of them easily extends to the case of t-ary trees. c © 2002 Elsevier Science B.V. All right...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1986

ISSN: 0097-3165

DOI: 10.1016/0097-3165(86)90004-x